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The complete homogeneous form of the quantum mechanical
master equation for a heteronuclear two-spin system is pre-
sented in the basis of Cartesian product operators. The homo-
geneous master equation is useful since it allows fast, single-
step computation of the density operator during pulse
sequences, without neglecting relaxation effects. The homoge-
neous master equation is also a prerequisite for an expansion of
the average Hamiltonian theory to include relaxation, thus
forming average Liouvillian theory. The coherences of the two-
spin system are assumed to be relaxed both by mutual dipole-
dipole interaction and by chemical shift anisotropy interaction
with the static magnetic field. The cross-correlation between
dipole—dipole and chemical shift anisotropy relaxation mecha-
nisms is also considered. To illustrate the applicability of the
developed formalism we simulate the overall transfer efficiency
of three different inverse detection *H-*>N correlation experi-
ments with parameters corresponding to a large protein. o 199
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INTRODUCTION

a simple substitution makes the master equation homog
neous B). Obviously, neither of these methods represents
complete solution to the problem.

It has been shown, however, that the Liouville—von Neu
mann equation can be rewritten in a homogeneous form witl
out introducing any approximationg)( The practical details
regarding the implementation have been sorted out both in tl
basis of level shift operatorg(5), and in the basis of Cartesian
product operators6(-8. The homogeneous master equatior
(HME) is in our opinion easier to understand when expresse
in the basis of Cartesian product operators. The previous p
pers dealing with the HME in the basis of Cartesian produc
operators for a heteronuclear spin systé&m7] only give the
solution for the limited part of Liouville space related to the
extended Solomon equatiory.(We feel that the HME for the
complete Liouville space is useful, especially in the simula
tions of pulse sequences. We have previously presented the
theory for a homonuclear spin system and from the full theor
derived the homogeneous form of the Bloch—Solomon equ
tions @).

Average Hamiltonian theory has been used in the develo
ment of composite pulse sequences in which a specific Har
iltonian is required during a certain time intervd).( The

The ordinary quantum mechanical master equation deemogeneous master equation makes it possible to formulz

scribing the evolution of the density operator includingn average Hamiltonian theory in combination with an averag
relaxation, the Liouville-von Neumann equation, has thelaxation superoperator, which is named average Liouvillia
mathematical form of an inhomogeneous differential equéreory @, 7). Average Liouvillian theory will be useful in the
tion (1, 2. The fact that it is inhomogeneous obviouslyevelopment of pulse sequences that modifies the effecti
complicates its use for obtaining analytical and numericedlaxation superoperator, i.e., if certain relaxation pathways a
solutions to NMR-related problems. One possible approagsquired to be open while others are required to be close
to the problem is to ignore relaxation altogether. Withouwluring a time interval.
relaxation the Liouville—von Neumann equation is homoge- In order to illustrate the applicability of the complete HME
neous. A second, more common approach is to ignore e have simulated the transfer efficiency for three differer
laxation during RF pulses and to include relaxation onlypes of inverse detecticiti—'°N correlation experiments. The
during periods of free precession. This simplifies the calcexperiments are an ordinary phase cycled HSQC experime
lations since the spin Hamiltonian commutes with the equii0), a sensitivity enhanced gradient selected HSQC expel
librium density operator in the absence of an RF field, andent (L1), and a heteronuclear cross-polarization (CP)) (
based experiment. Molecular parameters assumed in the si

1To whom correspondence should be addressed. Fax: 46-8-608-921dtions correspond to those of a macromolecule. Transf
E-mail: peter@csb.ki.se efficiencies as a function of offset chemical shifts are presente
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8 ALLARD, HELGSTRAND, AND HARD

for all pulse sequences. Relaxation is included in all parts of wy, = —v,B;;coqd)
the simulations.
ws= —YBxCO s
THEORY wy = —vBsin(¢,)
Introduction wsy= —yBgSin(ds), (6]

We will calculate the homogeneous form of the quantu
mechanical master equatiod) (for a scalar-coupled hetero-
nuclear two-spin system in the basis of Cartesian prod

operators_(ﬁ, 7. o rad/s. The doubly rotating frame is assumed in all calculatior
The spin Hamiltonian for a scalar-coupled heteronucleﬁ{ this paper

two-spin system in the presence of two different RF fields canrpe ordinary quantum mechanical master equatibr)
be wnitten using the Cartesian product operaids) s i.e., the Liouville—von Neumann equation for the evolution of

the density operatos in the presence of relaxation, has the

Whereﬂl and ()¢ are the chemical shift offset frequencies in
rad/s; andw,y, ws, ,, and wg, are the RF magnetic field
Li:ccgmponents at the two frequencies along xh@ndy axes in

HO,RF(t) = Ho + Hget) (1]

form
with ; A A
1 0 = —il:l - f( — 7
Ho= @, + oS, + 7J21.S, 2] dt 7 o o~ 09) [7]
and with
Hre®) = =By {1,cow ret + ¢y) + 1,Sin(w ret + ¢y)} o = [H. o], o

—Bays{Scodwsget + ¢s) + SSin(wsget + $s)t, .
[3] where H is the commutator superoperator for the coherer
spin—spin and spin-field interactions ahdis the relaxation
wherew, and wg are the angular Larmor frequencies of spin superoperator that accounts for the relaxation of the densi
andsS; J is the scalar coupling constant between the two spiggerator,o, to equilibrium,o,. Double carets denote superop-
in hertz;w, r andws rr are the two angular RF field frequen-erators. The static equilibrium density operator is calculate
cies; andB, ,, Bg;, ¢, and¢s are the strengths and phases giccording to
the two applied RF fields. The magnetogyric ratios for the two
spins are denoteg, and ys. exp[—#iHkT]
It is advisable to render the spin Hamiltonian time-indepen- 70~ Tr{exp[-hHJ/KT]} ’ [0l

dent by a transformation into a doubly rotating frame rotating

with the RF frequencies, rr andws rr about thez axis, using  \yhereH, is defined in Eq. [2]7 is Planck’s constant divided by
) ) ) 27r; kis Boltzmann’s constant; anflis the absolute temperature
H = exdiwsreStlexdio gel t1Hore() €XH —i @) gel A] in kelvins. The equilibrium density operator in the doubly rotating
X exf —iwsgeSt] — 0z, — 0sreS, [4] frgme is 'Fhe same as the static equilibriqm density operator sin
it is invariant to rotations about the z axis.

The time-independent spin Hamiltonian, for a scalar-coupled !t has been shown that the relaxation superopeiatan be
heteronuclear two-spin system in the doubly rotating frame ck@Placed by an improved relaxation superoperdtgy, trans-

thus be written using the Cartesian product operators as ~ forming the inhomogeneous master equation into a homog
neous form 4),

H=Ql,+ QS+ 7I2l.,S, + w,l,

d 2 oz
+ wsS+ oy, + wgS, [5] Fri —(iH + I'ippo. [10]

with This is the equation we want to derive for a heteronuclee
two-spin system. The improved relaxation operator is adjuste
for the thermal polarization by the surrounding latti€e 7).

Qs = 05— wspe It is convenient to use an operator basis set that includes t

O =0 — W RF
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unity operatorE, since in this case the thermal correction casystem are affected by the modulation induced by the e:
be performed using the otherwise empty column in the relaternal RF field. It is however reasonable to assume éhat
ation matrix corresponding to this operatd, {). This new < 1, wherew, is the angular nuclear spin precession rat
column is calculated by multiplying the relaxation matfix about the effective field and, is the correlation time of the
with the vector corresponding to the equilibrium density opeinteractions responsible for relaxation. It can be shown th:

ator oy, using this approximation the relaxation behavior is the sam
as in the absence of the RF field, but in a frame tilte
The Coherent Term relative to the static magnetic field§, 19. The elements of

We will use the Cartesian product operators as an operafdf Redfield relaxation matrix in the basis of Cartesia
basis set for our calculations. For a two-spin system the PEoduct operators can then be calculated using Wignér 3
Cartesian product operators3j are symbols according t020, 2)

BN = E/2, 5 Il g 2 2
1-‘rs =3 E AnAm E [ _ _ ]
|><! lyv |21 S(v S/v SZ! 3 nm q=—2u=-1 ®oa ® q
21,8, 21,8, 21,S, X I"M(pol + (g — woy)
21,8, 21,8, 21,8, X Tr{[LMK™ , BZPTLIKD , BZP), [13]
2'23(1 2| ZSH 2| ZSZ' [11]

where T denotes the adjoint and in whi€handL are either

The coherent part of the master equation in the basis @€ spherical spin operators for the two interacting spins i
Cartesian product operators can be calculated directly frdhf case of DD relaxation or the spherical spin operator ¢
the basis operators in Eq. [11] and the rotating frame spifi@ nucleus with anisotropy of shielding and the componen

Hamiltonian in Eq. [5] using commutator relationships acaf @ unit vector oriented along the static external magnet
cording to Q) field in the case of CSA relaxation. The fact8y, is the

strength of relaxation mechanismandJ(w) is the auto- or
sspint F1 | m2sp 2spin 2spi cross-correlation spectral density at the angular frequenc
His = (BF'TH[BS™) = (BF"I[H, BF*) . The indicesn and m run over the different mechanisms
= (B®PI|HBZP" — BZPH), [12] involved in the relaxatlon_, in this case DD and CSA_.nIf
equalsm, the autocorrelation relaxation rate of a particulal

wherer ands denote the two Cartesian product operators in tffB€chanism is calculated, whereasiiis not equal tam, the
basis set for which a matrix element is calculated. It should GE0SS-correlation relaxation rate between two mechanisms
noted that this equation does not contain bras and kets in fifculated. The indices and s denote the two Cartesian
usual Dirac state space of quantum mechanics, but ratREPdUCt operators in the basis set between which the rela
superbras and superkets in a larger vector space named&{@n rate is calculated. If equalss, the autorelaxation rate

perspace 14, 4. The matrix elements calculated are include@f @ particular basis operator is calculated, whereasisf
in the matrix of Eq. [19], which is to be presented later. not equal tos, the cross-relaxation rate between two basi
operators is calculated. The strengths of the DD and tt

The Relaxation Term CSA relaxation mechanisms are given by

When calculating the relaxation term in the master equation A
we assume that the two spins are dipole—dipole (DD) coupled A;=3 (MO) ( 7;75) [14]
and experience relaxation due to this coupling. We also assume 4m is
that one of the spins, spif, experiences relaxation due to
chemical-shift anisotropy (CSA) and that the shielding tens8Rd
is axially symmetric. The spihis also assumed to be relaxed

by DD interactions with spins other than sf8nThe possibility A.= —(o)— o) yBo [15]
of cross-correlation between DD and CSA relaxatith, (1§
is finally also taken into account. respectively, wherg, is the permeability of vacuum; g is the

The elements of the relaxation matrix are calculated usinigstance between spirisandS; o and o, are the shielding
Redfield theory with the secular and other well-known apgonstants for the parallel and perpendicular directions an a
proximations {, 17). The relaxation superoperator is inally symmetric shielding tensor, respectively; aBg is the
principle time-dependent since the eigenstates of the sgilatic magnetic field strength of the magnet.
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The dynamic properties of vectors in the molecule in — qdd, 0y — oo,y — qede, /L _
which the spins reside can be described by a model. TheJ(w) = Mw) = o) = JHw)/z (3 cos(g) = 1), [18]
model can then be used in order to derive an analytical
spectral density function])(w). The relaxation rates de-whereg is the angle between the unique axis of the CSA tensc
scribed by Eg. [13] are functions of the spectral densignd the internuclear vectoys. This equation is not rigorously
function at certain angular frequencies. In our simulatiorerrect in the presence of internal motion, i.e.S#< 1, but
we will consider the model for dynamics derived using thi is a good approximation i is small @4).
Lipari-Szabo approach2®, 23. The analytical spectral The relaxation matrix elements calculated from Eq. [13] an
density function for this model is the relations between spectral densities from Eq. [18] ai

included in the matrix of Eq. [19].

2 St (1 -9
Jw) =gl 77 (0r)? " 1+ (wr)? [16] The Homogeneous Master Equation

We now present the explicit matrix representation of Eg

with [10] by adding up the coherent terms from Eq. [12] and th
relaxation terms from Eg. [13]. The matrix must also be cor
1.1 171 Tected for thermal polarization. The first column in the matri

T Tm Te [17] corresponds to the unity operatéf2. The thermal correction

vector for equilibrium magnetization with the elemertls,
wherer,, is the overall rotational correlation time for a moleOs, andO g is inserted at this positign. The vector is calculatec
cule; 7, is the correlation time of internal motions; agd an as described before by multiplying with o, followed by
order parameter that describes the balance between contribudtiplication by the factor—2 in order to account for the
tions to relaxation due to overall rotation and internal motiominus sign in front of the matrix and the fact that we use th
The assumptions behind the Lipari-Szabo model are that thgeratorE/2 in our basis set and n&. The result is

E/2 0 0O 0o 0 O O O 0 O 0 O 0 0 0 0 of| B2
I 0 N & -4 0 0 0 0 mwW 0 O 0 0 0 0 o© e
I 0 -9 N w 0 0 0 -mJ 0 0 0 0 0 0 o0 0 ly
I, -20, wy, — o, p 0 0 ¢ O O O 0 O 0 0 0 0 I,
S 0 0 0 0 A Qs —wg, O 0 =ms mW O 0O 0 0 o© S
S 0 0 0 0 Qs As w, O 0 —-m ms O 0 0 0 0 S
S, -20s 0 0 o0 wy —ws, ps O O O O 0 0 0 0 & S
d| 21,s, 0 0 @ 0 0 0 0 p O 0 0 wy —ws, 0 0 —-ow (|28
dtf24,S, (= 0 -m3 0 0O O O O —-Q p 0 0 0 0 ws —ws o 2,5 (. [19]
21,5, 0 0 0 0 s = O 0 0 p5 Qs wy 0 -wx 0 -wg 21,5
21,5, 0 0 0 0 -m »n 0 0 0 -0 p@ 0 o 0 -w o 2.5
21,5, 0 0 0 0 0 0 0 -wy O -, 0O ™ Qs O —p™ 0 2LS
21, 0 0 0 0 0 0 0 wg O 0 - —Os A™ p™ O O 2,S
21,5 0 0O 0O 0O 0O 0 o 0 —wgy w, O —& p™ A™M Qg O 2,5
21,5 0 0 0 0 O O 0 0 wg O w —u™ -0 —-Os A™ 0 2,5
21,S, -20s O 0 0 0 0 & wy —wx wsy —ws O 0 0 0 p&F 2.5

overall rotation is isotropic and that the two motions areith
statistically independent.

There are three different spectral density functions to be
considered)(w), J°%(w), andJ°%w), corresponding to DD
autocorrelation, CSA autocorrelation, and DD-CSA cross-cor-
relation, respectively. If isotropic rotational diffusion of a rigid
body is assumed, there is a simple relation between the differ-
ent spectral densitie24) Ois = dMg [22]

0, = pMj + oMg [20]

Os= oM + pMg [21]
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and 1 1
8s= 3 AdAc5 [3 cos(¢) — 1][I(ws)] [33]

1 3
As= 36 Ad[ 2J(0) + 5 J(ws) + = J(wl w9 1 1
M5 = 3 AdAc 5 [3 cos(e) — 1] J(O) +5 w9 |, [34]
+ 3J(w) + 3w, + ws)]
whereM,, andM g, are the equilibrium magnetizations of spin
| and S, respectively;\ is the relaxation rate for transverse
+t3 A§[3 J0) + 5 J(ws)] [23] in-phase magnetizatiop;is the relaxation rate for longitudinal
magnetizationp{ is the relaxation rate for transverse spin
magnetization that is antiphase with respect to sgim™9
represents relaxation rates for multiple-quantum coherence
p°SPis the relaxation rate for longitudinal two-spin orderis
+ Ay [24] the longitudinal cross-relaxation rai@™“is a cross-relaxation
rate between multiple-quantum coherence componentss
1 the longitudinal cross-correlation relaxation rate; apds the
Ps= 35 AT3)(we) + J(w, — wg) + 6)(w, + wg)] transverse cross-correlation relaxation rate.

We have also assumed that spinan be relaxed due to DD
relaxation by spins other than sp#in the neighborhood df. In
order to take this into account we have addgdas additional
1 transverse relaxation in Eqgs. [24], [28], [29] apg as additional
P = 5 Ao~ 09 + 3o+ B3+ oa] + NGl ewatonn Sas 26] 27, anc Y

pproximations introduced by E
[26] [18] are not crucial in the derivation of Eq. [19]. Equation [19]
1 3 can easily be made completely general with respect to ar
PS=3g Ad|: 23(0) + 5 Jw9 differences between, e.gl%(w) and J°%(») by making ap-
propriate substitutions in Egs. [23]-[34].

1
by 36Ad[23(0)+3J(w3)+ o — 09

+ g J(w) + 3w, + wg)

1
+ 3 A1) [25]

1
* 2 Y = o9 + 3w + wS)] The Solution to the Homogeneous Master Equation

1 ]2 1 The solution to the homogeneous master equation, Eq. [1
+5 A 530 + 5wy | + pu [271
3°°3 2 IS
3 2
Pl =36Aq 220 + 5 J(“" —wd 5 0) o(t, + At) = exd —PAt]o(t = t), [35]
1 2
+ 3w, + ws)} + 3 AT J(w9] + Ay [28] where the relaxation LiouvilliaR is the matrix in Eq. [19] and

exp[— |5At] is a superoperator relaxation propagatdy. (The

ma 1 expectation value for an observable corresponding to the o
A % ‘](‘”S) ) J(“" g erator Obs is calculated using
3
+ > J(w) + 3w, + ws)] (Obs = (Obs|a(t)). [36]
1 2 1 Observablex andy magnetization correspond to the operator:
+ 2 A 530) + 53 +A 29 y mag P perator
3 [ ©) (ws)] H [29] Obs= I, + S, and Obs= |, + S, respectively.

1 1 The effective relaxation LiouvilliaPover a discrete num-
p,ZSSp_ 36 AT3)(wg + 3)(w)] + 3 A J(w9d] + py [30] ber of stepsn, with their respective Liouvillians?,,, and time
1 periods,At,, is defined by

o= %AS[—J((», — wg) + 6J(w, + wg)] [31]

1 1 eXpl-Pertia] = eXpl-PrAL] - - - expE-PAtlexp[-PAL],
M= 36 [ = J(w — wg) + 3w, + ws)] [32] 37]
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wheret,,, = 2{_, At; is the total time for the pulse sequence.
The effective relaxation Liouvillian is calculated according to

Pyi= — . In{exp[—P,At] - - - exp[-P,AtJexp[—PA ]}

tior
18] ‘5NJ t'I I [ Waitz-16 |

SIMULATIONS

Implementation B

The simulations were performed using Matlab software version y

y
5.1 on a 300 MHz Pentium 2 computer with Windows NT 4.0 asyg u T I I I I I T I T I 3
operating system. The relaxation rates were calculated using Egs.
[14], [15], [23]-[34], and [39] and [40] (not yet shown) with 0, y
spectral densities from Egs. [16]-[18]. The relaxation rates amiLI J I t, 5' 5| T I T I I [ Wali 16 ]
the thermal correction from Egs. [20]-[22] were inserted in the
matrix of Eq. [19] together with relevant chemical shifts, scalar
coupling, and RF fields. The time evolution of the density operGZ u 1
ator for different steps in the pulse sequences was evaluated with
Eq. [35] using Matlab routines for calculating the exponent of t

matrix. The observable or y magnetization is identified as a

single element in the calculated density operatcand can be 0,
extracted with a scalar product according to Eq. [36]. e ® I %
H | Dipsi-2 ] [ Dipsi-2

Acq

Application to'H-'°N Correlation Experiments A A

To illustrate the applicability of the developed formalisni’N [Dipsi2 | & [ Dipsi2 [ Waltz-16]
we have 1S|m1%|ated COhe_rence tra_nSfer eff|C|enC|e§ for SOMEiG 1. Pulse sequences for inverse detecfiblr'>N correlation experi-
common~H-"N correlation experiments on a typical Me&ments for which overall coherence transfer efficiencies are simulated using t
dium sized protein. The pulse sequences are presentedidveloped formalism. Sequence (A) is a phase cycled HSQC experifi@nt (
Figs. 1A-1C. Sequence (A) is an ordinary phase cyclégduence (B) is a sensitivity enhanced, phase modulated, gradient selec
HSQC experiment 1(0), sequence (B) is a Sensitivity en_HSQC experiment1(l). Sequence (C) is a heteronuclear cross-polarizatio

. CP) based experiment2) with DIPSI-2 27) mixing. All pulse phases are
hanced, phase modulated, gradlent selected HSQC eXpéﬁl‘éss otherwise indicated. Thin and thick vertical bars indicate 90° and 18

ment (L1), and sequence (C) is a heteronuclear cross-polglises, respectively. Th&N RF field strength is 5555 Hz in all pulse
ization (CP) based experimerit3). In Fig. 2 the simulated sequences. Th# RF field strength is set to 50,000 Hz for all hard pulses anc
transfer efficiencies as a function of offset frequencies atee5555 Hz for DIPSI-2 mixing in sequence (C). The time delaysrares =
presented for the pulse sequences presented in Fig. 1. Tr§n752_ms and = 0.27 ms. The pul_sed field gradients in sequence (B) are 2.7
fer efficiency in this case means the fraction of equilibriurf.‘irl1d 0.27 ms long and applied with strengths of 30 ar¥0.4 G/cm, respec-
1 . . . ively. The DIPSI-2 mixing times in sequence (C) are 10.36 ms, whick
H magnetization that follows the desired coherence trans{@fresponds to twoR, R, R, R) supercycles. Phase cycling is employed as
pathways and can be detected as in-phase transxeysg follows: (A) ¢1 = (v, y, =Y, —Y); $2 = (X, —X, —X, X); rec. = (X, —x).
magnetization during acquisition. (B) #1 = (x); rec.= (X). (C)dl = (Y, ¥, =Y, —¥); $2 = (X, X, =X, —X);
We have used the following parameters in order to descrifid = (X =% =% X); ¢4 = (X, X, =X, =x); 1ec. = (X, =X, =X, X).
the two-spin system. The spihsandS are assigned t&H and
N nuclei, e.g., in a protein backbone amide. The one-bond
scalar coupling constant is 92 Hz. The molecular dynamics arel h€ proton experiences DD relaxation due to the nitroge
described by the overall rotational correlation time= 5 ns, and a virtual proton at distances of 1.02 and 1.86 A, respe
the correlation time for internal motion% =50 ps, and the tlvely The distance to the virtual proton is calculated b)
order paramete®® = 0.8. Theangle between the unique axigfirst summing up the distances between each amide prots
of the CSA tensor and the internuclear veatgris assumed to and all other protons to the power of6 in a previously
be ¢ = 22°. determined protein structur@%), and then taking this sum
The nitrogen is assumed to be relaxed by DD interactidn the power of—1/6 (26). The average of these amide
with the proton and by CSA interaction with the external fielgrotons to other protons distances is 1.86 A. The longitud
using o, — o,) = —160 ppm. nal and transverse homonuclear proton DD-relaxation rate
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(ppm)

25 - — . . -

b

: ; 1
25 ™ L i L ! L ! I i H

-6 -4 -2 0 2 4 6 (ppm)

FIG. 2. Simulated transfer efficiencies as a function of offset chemical shifts for (A) a phase cycled HSQC, (B) a sensitivity enhanced HSQC, an
heteronuclear CP based correlation experiment. The remaining fraction of inypbagemagnetization at the beginning of the acquisition period is presente
as contour levels. The pulse sequences used in the simulations are presented in Fig. 1. The nuctebasgiisl are coupled together with a scalar coupling
constant of 92 Hz. The molecular dynamics important for relaxation are described by the overall rotational correlatign=tiriens; the correlation time of
internal motionsr, = 50 ps; and the order parame® = 0.8. Other relevant parameters assumed in the simulations are given in the text.

4

denotedp, andAy, can be calculated using equations similar 1/ wo\? (hvE
to Egs. [24] and [26]: An = 8( ) (

) [5J(0) + 93(wy) + 6J(2w)].  [40]

3
reff

1( mo\? (¥R i ic f :
pi=g (477) (r3H [J(0) + 3)(wy) + 6J(2wy)]  [39] _The _statlc magnetic field ;trength is set to 14_.09 T and tf
e simulations are performed with similar and experimentally real
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istic RF field strengths in order to be able to compare transferThe ordinary phase cycled HSQC experiment (A) has th
efficiencies. The RF field strength flifl is 50,000 Hz for all hard highest transferred intensity of the three experiments as well
pulses. The RF field strength f&IN in all sequences and foH a large*H bandwidth. It should be noted that the sensitivity
DIPSI-2 mixing in sequence (C) is 5555 Hz. The correspondirmnhanced experiment (B) transfers batandy magnetization
90° pulse lengths are 5 and 45, respectively. from the !N dimension to théH dimension and isv'2 more
sensitive compared to amplitude modulated experiments for
complete 2D data set. When this effect is taken into account tt
most efficient experiment is the sensitivity enhanced exper
The phase cycled HSQC in Fig. 1AQ) is implemented as ment for the present set of dynamics parameters. The cro:
written without any special problems. polarization based experiment (C) has the widést and the
The sensitivity enhanced gradient selected HSQC in Fig. TRost narrow'H bandwidth of all experiments. The transfer
(11) is more difficult to implement since it includes pulsed fieldurface is also smoother compared to the INEPT based exp
gradients (PFG). We have implemented the PFG in the follownents.
ing way. The effect of a pulsed field gradient iz aotation

Pulse Sequences

identical to the effect of the chemical shift. When the PFG is DISCUSSION
applied a term proportional to the PFG field strength is added
to all chemical shift terms in Eq. [19] according to It is interesting to note that all the common transformatior
rules of the product operator formalish3j occur as antisym-
0, =Q,— yBy2) metrical off-diagonal elements in the matrix of Eq. [19]. The
transformations due to chemical shifts, scalar coupling, and R
Qs= Qs — yBo(2), [41] pulses are clear and these are effective simultaneously, and

competition, with relaxation.

whereBy(2) is the strength of the applied PFG as a function of the All autorelaxation rates are diagonal elements, whereas tl
physical height of the sample tube. Only a single valueazin be cross-relaxation elements are symmetric off-diagonal ele
used at a time in the numerical calculations, corresponding tarents. It can also be noted that the Bloch equations in tf
singlexy plane in the sample tube. The calculations are therefo@ating frame 28) as well as both the heteronuclear Solomor
repeated with linearly spaced values ofind the normalized equations 29) and the extended Solomon equatiof}, @re
results are added. In this way an integration over the height of fikegrated parts of Eq. [19]. The relaxation rates of heterc
sample is performed. When pulsed field gradients are successfalliglear zero- and double-quantum coherences can be cal
implemented in a pulse sequence the desired magnetizationdaied as the difference and sum of the diagonal elemé¥it
ways have the same phase at the beginning of the acquisition and the off-diagonal element™, respectively.
is added constructively while unwanted magnetizations have ranThe spin Hamiltonian for a heteronuclear two-spin sys
dom phases and are added destructively. Simulations using t#im, Eq. [5], includes only one operator|,g, that can
ferent numbers of slices show that 50 planes are sufficient foansfer magnetization through the scalar coupling. Th
almost complete cancellation of unwanted magnetization. Vdgerage Liouvillian for a complete DIPSI-2 sequence usin
have therefore used 50 planes when integrating over the heighttoé Hamiltonian, Eqg. [5], can be calculated using Eq. [38]
the sample, which is assumed to be 1 &y(2) was assumed to It contains approximately the planar coupling Hamiltonian
be a linear function of. mJ(,S, + 1.,S), usually discussed in context of cross-polar-

Both echo and antiecho pathways were simulated and sigstion based experiments. The effect of the complicate
tracted in order to obtain the observablemagnetization in the DIPSI-2 sequence can be simulated with this averag
same way as in real experimenisl). Liouvillian. It should be clear that in the doubly rotating

The cross-polarization based experiment in Fig. 12} gses frame operator terms such agg and 2,S, average to zero
simultaneous DIPSI-27) mixing on both the'H and the*>N  rapidly compared to the time scale of a single pulse an
nuclei. This can easily be simulated using the homogenea@not be effective for transfer of magnetization. Thes
master equation. operator terms should therefore only be included in averac
Hamiltonians and not in real Hamiltonians.

There are several differences between the theory for he
eronuclear spin systems presented here and the theory
The transfer efficiencies for the three pulse sequences pnemonuclear spin systems presented earBgrThe homo-
sented in Figs. 1A-1C are compared in Figs. 2A—-2C. Thriclear theory includes the strong scalar coupling Hamiltc

normalizedx or y magnetization is presented as a function afian which induces rotations not only arounld<, as is the
offset frequencies in ppm foiH and**N. Thetl incrementa- case for heteronuclear theory (see previous paragraph), t
tion delay is set to 0. also around BS, and 2,S,. This makes isotropic mixing

Transfer Efficiencies



HETERONUCLEAR HOMOGENEOUS MASTER EQUATION 15

possible for homonuclear spin systems, with twice the rate simulations in magnetic resonance. An object-oriented program-

of transfer compared to cross-polarization for heteronuclear ming approach, J. Magn. Reson. A 106, 75-105 (1994).

spin systems12). The relaxation terms are calculated dif-4. J. Jeener, Superoperators in magnetic resonance, Adv. Magn.

ferently for homonuclear spin systems, and additional ele- Reson- 10. 1-51 (1982). _

ments appear, including cross-relaxation between transvereS: A- Smith, W. E. Palke, and J. T. Gerig, Superoperator propaga-

magnetization operator8), The use of a doubly rotatin tors in simulations of NMR spectra, J. Magn. Reson. A 106, 57-64
gne p - y rotating —(1994).

frame in the case of the heteronuclear theory prohibits use qf
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using a similar approach if the inhomogeneity can be described Mdes designed for treating longitudinal relaxation of weakly cou-
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. . . . 0. G. Bodenhausen and D. J. Ruben, Natural abundance nitrogen-15
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