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The complete homogeneous form of the quantum mechanical
master equation for a heteronuclear two-spin system is pre-
sented in the basis of Cartesian product operators. The homo-
geneous master equation is useful since it allows fast, single-
step computation of the density operator during pulse
sequences, without neglecting relaxation effects. The homoge-
neous master equation is also a prerequisite for an expansion of
the average Hamiltonian theory to include relaxation, thus
forming average Liouvillian theory. The coherences of the two-
spin system are assumed to be relaxed both by mutual dipole–
dipole interaction and by chemical shift anisotropy interaction
with the static magnetic field. The cross-correlation between
dipole– dipole and chemical shift anisotropy relaxation mecha-
nisms is also considered. To illustrate the applicability of the
developed formalism we simulate the overall transfer efficiency
of three different inverse detection 1H–15N correlation experi-
ments with parameters corresponding to a large protein. © 1998

Academic Press
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INTRODUCTION

The ordinary quantum mechanical master equation de-
scribing the evolution of the density operator including
relaxation, the Liouville–von Neumann equation, has the
mathematical form of an inhomogeneous differential equa-
tion (1, 2). The fact that it is inhomogeneous obviously
complicates its use for obtaining analytical and numerical
solutions to NMR-related problems. One possible approach
to the problem is to ignore relaxation altogether. Without
relaxation the Liouville–von Neumann equation is homoge-
neous. A second, more common approach is to ignore re-
laxation during RF pulses and to include relaxation only
during periods of free precession. This simplifies the calcu-
lations since the spin Hamiltonian commutes with the equi-
librium density operator in the absence of an RF field, and

a simple substitution makes the master equation homoge-
neous (3). Obviously, neither of these methods represents a
complete solution to the problem.

It has been shown, however, that the Liouville–von Neu-
mann equation can be rewritten in a homogeneous form with-
out introducing any approximations (4). The practical details
regarding the implementation have been sorted out both in the
basis of level shift operators (4, 5), and in the basis of Cartesian
product operators (6–8). The homogeneous master equation
(HME) is in our opinion easier to understand when expressed
in the basis of Cartesian product operators. The previous pa-
pers dealing with the HME in the basis of Cartesian product
operators for a heteronuclear spin system (6, 7) only give the
solution for the limited part of Liouville space related to the
extended Solomon equations (9). We feel that the HME for the
complete Liouville space is useful, especially in the simula-
tions of pulse sequences. We have previously presented the full
theory for a homonuclear spin system and from the full theory
derived the homogeneous form of the Bloch–Solomon equa-
tions (8).

Average Hamiltonian theory has been used in the develop-
ment of composite pulse sequences in which a specific Ham-
iltonian is required during a certain time interval (2). The
homogeneous master equation makes it possible to formulate
an average Hamiltonian theory in combination with an average
relaxation superoperator, which is named average Liouvillian
theory (6, 7). Average Liouvillian theory will be useful in the
development of pulse sequences that modifies the effective
relaxation superoperator, i.e., if certain relaxation pathways are
required to be open while others are required to be closed
during a time interval.

In order to illustrate the applicability of the complete HME
we have simulated the transfer efficiency for three different
types of inverse detection1H–15N correlation experiments. The
experiments are an ordinary phase cycled HSQC experiment
(10), a sensitivity enhanced gradient selected HSQC experi-
ment (11), and a heteronuclear cross-polarization (CP) (12)
based experiment. Molecular parameters assumed in the sim-
ulations correspond to those of a macromolecule. Transfer
efficiencies as a function of offset chemical shifts are presented
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for all pulse sequences. Relaxation is included in all parts of
the simulations.

THEORY

Introduction

We will calculate the homogeneous form of the quantum
mechanical master equation (4) for a scalar-coupled hetero-
nuclear two-spin system in the basis of Cartesian product
operators (6, 7).

The spin Hamiltonian for a scalar-coupled heteronuclear
two-spin system in the presence of two different RF fields can
be written using the Cartesian product operators (13) as

H0,RF~t! 5 H0 1 HRF~t! [1]

with

H0 5 vII z 1 vSSz 1 pJ2I zSz [2]

and

HRF~t! 5 2BI1gI $Ixcos~vI ,RFt 1 fI! 1 Iysin~vI ,RFt 1 fI!%

2BS1gS$Sxcos~vS,RFt 1 fS! 1 Sysin~vS,RFt 1 fS!%,

[3]

wherevI andvS are the angular Larmor frequencies of spinI
andS; J is the scalar coupling constant between the two spins
in hertz;vI ,RF andvS,RF are the two angular RF field frequen-
cies; andBI1, BS1, fI, andfS are the strengths and phases of
the two applied RF fields. The magnetogyric ratios for the two
spins are denotedgI andgS.

It is advisable to render the spin Hamiltonian time-indepen-
dent by a transformation into a doubly rotating frame rotating
with the RF frequenciesvI ,RF andvS,RF about thez axis, using

H 5 exp@ivS,RFSzt#exp@ivI,RFI zt#H0,RF~t!exp@2ivI,RFI zt#

3 exp@2ivS,RFSzt# 2 vI,RFI z 2 vS,RFSz. [4]

The time-independent spin Hamiltonian,H, for a scalar-coupled
heteronuclear two-spin system in the doubly rotating frame can
thus be written using the Cartesian product operators as

H 5 VII z 1 VSSz 1 pJ2I zSz 1 vIxI x

1 vSxSx 1 vIyI y 1 vSySy [5]

with

VI 5 vI 2 vI,RF

VS 5 vS 2 vS,RF

vIx 5 2gIBI1cos~fI!

vSx5 2gSBS1cos~fS!

vIy 5 2gIBI1sin~fI!

vSy5 2gSBS1sin~fS!, [6]

whereVI andVS are the chemical shift offset frequencies in
rad/s; andvIx, vSx, vIy and vSy are the RF magnetic field
components at the two frequencies along thex andy axes in
rad/s. The doubly rotating frame is assumed in all calculations
in this paper.

The ordinary quantum mechanical master equation (1, 2),
i.e., the Liouville–von Neumann equation for the evolution of
the density operators in the presence of relaxation, has the
form

d

dt
s 5 2iĤ̂s 2 Ĝ̂~s 2 s0! [7]

with

Ĥ̂s 5 @H, s#, [8]

where Ĥ̂ is the commutator superoperator for the coherent
spin–spin and spin–field interactions andĜ̂ is the relaxation
superoperator that accounts for the relaxation of the density
operator,s, to equilibrium,s0. Double carets denote superop-
erators. The static equilibrium density operator is calculated
according to

s0 5
exp[2\H0/kT]

Tr$exp[2\H0/kT#}
, [9]

whereH0 is defined in Eq. [2];\ is Planck’s constant divided by
2p; k is Boltzmann’s constant; andT is the absolute temperature
in kelvins. The equilibrium density operator in the doubly rotating
frame is the same as the static equilibrium density operator since
it is invariant to rotations about the z axis.

It has been shown that the relaxation superoperatorĜ̂ can be
replaced by an improved relaxation superoperator,Ĝ̂imp, trans-
forming the inhomogeneous master equation into a homoge-
neous form (4),

d

dt
s 5 2~iĤ̂ 1 Ĝ̂ imp!s. [10]

This is the equation we want to derive for a heteronuclear
two-spin system. The improved relaxation operator is adjusted
for the thermal polarization by the surrounding lattice (6, 7).

It is convenient to use an operator basis set that includes the
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unity operatorE, since in this case the thermal correction can
be performed using the otherwise empty column in the relax-
ation matrix corresponding to this operator (6, 7). This new
column is calculated by multiplying the relaxation matrixĜ̂
with the vector corresponding to the equilibrium density oper-
ator s0.

The Coherent Term

We will use the Cartesian product operators as an operator
basis set for our calculations. For a two-spin system the 16
Cartesian product operators (13) are

B2spin 5 E/ 2,

I x, I y, I z, Sx, Sy, Sz,

2I xSx, 2I xSy, 2I xSz,

2I ySx, 2I ySy, 2I ySz,

2I zSx, 2I zSy, 2I zSz. [11]

The coherent part of the master equation in the basis of
Cartesian product operators can be calculated directly from
the basis operators in Eq. [11] and the rotating frame spin
Hamiltonian in Eq. [5] using commutator relationships ac-
cording to (2)

Hrs 5 ^Br
2spinuĤ̂uBs

2spin& 5 ^Br
2spinu@H, Bs

2spin#&

5 ^Br
2spinuHBs

2spin 2 Bs
2spinH&, [12]

wherer ands denote the two Cartesian product operators in the
basis set for which a matrix element is calculated. It should be
noted that this equation does not contain bras and kets in the
usual Dirac state space of quantum mechanics, but rather
superbras and superkets in a larger vector space named su-
perspace (14, 4). The matrix elements calculated are included
in the matrix of Eq. [19], which is to be presented later.

The Relaxation Term

When calculating the relaxation term in the master equation
we assume that the two spins are dipole–dipole (DD) coupled
and experience relaxation due to this coupling. We also assume
that one of the spins, spinS, experiences relaxation due to
chemical-shift anisotropy (CSA) and that the shielding tensor
is axially symmetric. The spinI is also assumed to be relaxed
by DD interactions with spins other than spinS. The possibility
of cross-correlation between DD and CSA relaxation (15, 16)
is finally also taken into account.

The elements of the relaxation matrix are calculated using
Redfield theory with the secular and other well-known ap-
proximations (1, 17). The relaxation superoperator is in
principle time-dependent since the eigenstates of the spin

system are affected by the modulation induced by the ex-
ternal RF field. It is however reasonable to assume thatvetc

! 1, whereve is the angular nuclear spin precession rate
about the effective field andtc is the correlation time of the
interactions responsible for relaxation. It can be shown that
using this approximation the relaxation behavior is the same
as in the absence of the RF field, but in a frame tilted
relative to the static magnetic field (18, 19). The elements of
the Redfield relaxation matrix in the basis of Cartesian
product operators can then be calculated using Wigner 3-J
symbols according to (20, 21)

Grs 5
5

3 O
n,m

AnAm O
q522,m521

q52,m51 F 1 1 2
m q 2 m 2q G 2

3 Jnm~mvL
n 1 ~q 2 m!vK

n!

3 Tr$@Lm
mKq2m

m , Br
2spin#†@Lm

nKq2m
n , Bs

2spin#%, [13]

where † denotes the adjoint and in whichK andL are either
the spherical spin operators for the two interacting spins in
the case of DD relaxation or the spherical spin operator of
the nucleus with anisotropy of shielding and the components
of a unit vector oriented along the static external magnetic
field in the case of CSA relaxation. The factorAn is the
strength of relaxation mechanismn, andJ(v) is the auto- or
cross-correlation spectral density at the angular frequency
v. The indicesn and m run over the different mechanisms
involved in the relaxation, in this case DD and CSA. Ifn
equalsm, the autocorrelation relaxation rate of a particular
mechanism is calculated, whereas ifn is not equal tom, the
cross-correlation relaxation rate between two mechanisms is
calculated. The indicesr and s denote the two Cartesian
product operators in the basis set between which the relax-
ation rate is calculated. Ifr equalss, the autorelaxation rate
of a particular basis operator is calculated, whereas ifr is
not equal tos, the cross-relaxation rate between two basis
operators is calculated. The strengths of the DD and the
CSA relaxation mechanisms are given by

Ad 5 3 S m0

4pD S\gIgS

r IS
3 D [14]

and

Ac 5 2~s\ 2 s'!gSB0, [15]

respectively, wherem0 is the permeability of vacuum;r IS is the
distance between spinsI and S; s\ and s' are the shielding
constants for the parallel and perpendicular directions an axi-
ally symmetric shielding tensor, respectively; andB0 is the
static magnetic field strength of the magnet.
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The dynamic properties of vectors in the molecule in
which the spins reside can be described by a model. The
model can then be used in order to derive an analytical
spectral density function,J(v). The relaxation rates de-
scribed by Eq. [13] are functions of the spectral density
function at certain angular frequencies. In our simulations
we will consider the model for dynamics derived using the
Lipari–Szabo approach (22, 23). The analytical spectral
density function for this model is

J~v! 5
2

5F S2tm

1 1 ~vtm!2 1
~1 2 S2!t i

1 1 ~vt i!
2G [16]

with

1

t i
5

1

tm
1

1

te
, [17]

wheretm is the overall rotational correlation time for a mole-
cule; te is the correlation time of internal motions; andS2 an
order parameter that describes the balance between contribu-
tions to relaxation due to overall rotation and internal motion.
The assumptions behind the Lipari–Szabo model are that the

overall rotation is isotropic and that the two motions are
statistically independent.

There are three different spectral density functions to be
considered,Jdd(v), Jcc(v), andJcd(v), corresponding to DD
autocorrelation, CSA autocorrelation, and DD–CSA cross-cor-
relation, respectively. If isotropic rotational diffusion of a rigid
body is assumed, there is a simple relation between the differ-
ent spectral densities (24)

J~v! 5 Jdd~v! 5 Jcc~v! 5 Jcd~v!/1
2

~3 cos2~w! 2 1!, @18#

wherew is the angle between the unique axis of the CSA tensor
and the internuclear vectorr IS. This equation is not rigorously
correct in the presence of internal motion, i.e., ifS2 , 1, but
it is a good approximation ifw is small (24).

The relaxation matrix elements calculated from Eq. [13] and
the relations between spectral densities from Eq. [18] are
included in the matrix of Eq. [19].

The Homogeneous Master Equation

We now present the explicit matrix representation of Eq.
[10] by adding up the coherent terms from Eq. [12] and the
relaxation terms from Eq. [13]. The matrix must also be cor-
rected for thermal polarization. The first column in the matrix
corresponds to the unity operatorE/ 2. The thermal correction
vector for equilibrium magnetization with the elementsUI,
US, andUIS is inserted at this position. The vector is calculated
as described before by multiplyingĜ̂ with s0, followed by
multiplication by the factor22 in order to account for the
minus sign in front of the matrix and the fact that we use the
operatorE/ 2 in our basis set and notE. The result is

with

UI 5 rIMI0 1 sMS0 [20]

US 5 sMI0 1 rSMS0 [21]

UIS 5 dSMS0 [22]

d

dt

E/ 2
I x

I y

I z

Sx

Sy

Sz

2I xSz

2I ySz

2I zSx

2I zSy

2I xSx

2I xSy

2I ySx

2I ySy

2I zSz

5 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 lI VI 2vIy 0 0 0 0 pJ 0 0 0 0 0 0 0
0 2VI lI vIx 0 0 0 2pJ 0 0 0 0 0 0 0 0

22UI vIy 2vIx rI 0 0 s 0 0 0 0 0 0 0 0 0
0 0 0 0 lS VS 2vSy 0 0 hS pJ 0 0 0 0 0
0 0 0 0 2VS lS vSx 0 0 2pJ hS 0 0 0 0 0

22US 0 0 s vSy 2vSx rS 0 0 0 0 0 0 0 0 dS

0 0 pJ 0 0 0 0 rI
a VI 0 0 vSy 2vSx 0 0 2vIy

0 2pJ 0 0 0 0 0 2VI rI
a 0 0 0 0 vSy 2vSx vIx

0 0 0 0 hS pJ 0 0 0 rS
a VS vIy 0 2vIx 0 2vSy

0 0 0 0 2pJ hS 0 0 0 2VS rS
a 0 vIy 0 2vIx vSx

0 0 0 0 0 0 0 2vSy 0 2vIy 0 lmq VS VI 2mmq 0
0 0 0 0 0 0 0 vSx 0 0 2vIy 2VS lmq mmq VI 0
0 0 0 0 0 0 0 0 2vSy vIx 0 2VI mmq lmq VS 0
0 0 0 0 0 0 0 0 vSx 0 vIx 2mmq 2VI 2VS lmq 0

22UIS 0 0 0 0 0 dS vIy 2vIx vSy 2vSx 0 0 0 0 rIS
2sp

E/2
Ix

Iy

Iz

Sx

Sy

Sz

2IxSz

2IySz

2IzSx

2IzSy

2IxSx

2IxSy

2IySx

2IySy

2IzSz

, [19]
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and

lS 5
1

36
Ad

2F2J~0! 1
3

2
J~vS! 1

1

2
J~vI 2 vS!

1 3J~vI! 1 3J~vI 1 vS!G
1

1

3
Ac

2F2

3
J~0! 1

1

2
J~vS!G [23]

lI 5
1

36
Ad

2F2J~0! 1 3J~vS! 1
1

2
J~vI 2 vS!

1
3

2
J~vI! 1 3J~vI 1 vS!G 1 lH [24]

rS 5
1

36
Ad

2@3J~vS! 1 J~vI 2 vS! 1 6J~vI 1 vS!#

1
1

3
Ac

2@ J~vS!# [25]

rI 5
1

36
Ad

2@ J~vI 2 vS! 1 3J~vI! 1 6J~vI 1 vS!# 1 rH

[26]

rS
a 5

1

36
Ad

2F2J~0! 1
3

2
J~vS!

1
1

2
J~vI 2 vS! 1 3J~vI 1 vS!G

1
1

3
Ac

2F2

3
J~0! 1

1

2
J~vS!G 1 rH [27]

rI
a 5

1

36
Ad

2F2J~0! 1
1

2
J~vI 2 vS! 1

3

2
J~vI!

1 3J~vI 1 vS!G 1
1

3
Ac

2@ J~vS!# 1 lH [28]

lmq 5
1

36
Ad

2F3

2
J~vS! 1

1

2
J~vI 2 vS!

1
3

2
J~vI! 1 3J~vI 1 vS!G

1
1

3
Ac

2F2

3
J~0! 1

1

2
J~vS!G 1 lH [29]

rIS
2sp 5

1

36
Ad

2@3J~vS! 1 3J~vI!# 1
1

3
Ac

2@ J~vS!# 1 rH [30]

s 5
1

36
Ad

2@2J~vI 2 vS! 1 6J~vI 1 vS!# [31]

mmq 5
1

36
Ad

2F2
1

2
J~vI 2 vS! 1 3J~vI 1 vS!G [32]

dS 5
1

3
AdAc

1

2
@3 cos2~w! 2 1#@ J~vS!# [33]

hS 5
1

3
AdAc

1

2
@3 cos2~w! 2 1#F2

3
J~0! 1

1

2
J~vS!G , [34]

whereMI0 andMS0 are the equilibrium magnetizations of spin
I and S, respectively;l is the relaxation rate for transverse
in-phase magnetization;r is the relaxation rate for longitudinal
magnetization;rI

a is the relaxation rate for transverse spinI
magnetization that is antiphase with respect to spinS; lmq

represents relaxation rates for multiple-quantum coherences;
r2sp is the relaxation rate for longitudinal two-spin order;s is
the longitudinal cross-relaxation rate;mmq is a cross-relaxation
rate between multiple-quantum coherence components;dS is
the longitudinal cross-correlation relaxation rate; andhS is the
transverse cross-correlation relaxation rate.

We have also assumed that spinI can be relaxed due to DD
relaxation by spins other than spinS in the neighborhood ofI. In
order to take this into account we have addedlH as additional
transverse relaxation in Eqs. [24], [28], [29] andrH as additional
longitudinal relaxation in Eqs. [26], [27], and [30] (21).

It should be noted that the approximations introduced by Eq.
[18] are not crucial in the derivation of Eq. [19]. Equation [19]
can easily be made completely general with respect to any
differences between, e.g.,Jdd(v) and Jcc(v) by making ap-
propriate substitutions in Eqs. [23]–[34].

The Solution to the Homogeneous Master Equation

The solution to the homogeneous master equation, Eq. [19],
is

s~t1 1 Dt! 5 exp@2P̂̂Dt#s~t 5 t1!, [35]

where the relaxation LiouvillianP̂̂ is the matrix in Eq. [19] and
exp[2P̂̂Dt] is a superoperator relaxation propagator (5). The
expectation value for an observable corresponding to the op-
erator Obs is calculated using

^Obs& 5 ^Obs†us~t!&. [36]

Observablex andy magnetization correspond to the operators
Obs5 I x 1 Sx and Obs5 I y 1 Sy, respectively.

The effective relaxation LiouvillianP̂̂eff over a discrete num-
ber of steps,n, with their respective Liouvillians,P̂̂n, and time
periods,Dtn, is defined by

exp[2P̂̂effttot] 5 exp[2P̂̂nDtn] · · · exp[2P̂̂2Dt2]exp[2P̂̂1Dt1],

[37]
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wherettot 5 ¥ i51
n Dti is the total time for the pulse sequence.

The effective relaxation Liouvillian is calculated according to

P̂̂eff 5 2
1

ttot
ln{exp[2P̂̂nDtn] · · · exp[2P̂̂2Dt2]exp[2P̂̂1Dt1]}.

[38]

SIMULATIONS

Implementation

The simulations were performed using Matlab software version
5.1 on a 300 MHz Pentium 2 computer with Windows NT 4.0 as
operating system. The relaxation rates were calculated using Eqs.
[14], [15], [23]–[34], and [39] and [40] (not yet shown) with
spectral densities from Eqs. [16]–[18]. The relaxation rates and
the thermal correction from Eqs. [20]–[22] were inserted in the
matrix of Eq. [19] together with relevant chemical shifts, scalar
coupling, and RF fields. The time evolution of the density oper-
ator for different steps in the pulse sequences was evaluated with
Eq. [35] using Matlab routines for calculating the exponent of a
matrix. The observablex or y magnetization is identified as a
single element in the calculated density operators and can be
extracted with a scalar product according to Eq. [36].

Application to1H–15N Correlation Experiments

To illustrate the applicability of the developed formalism
we have simulated coherence transfer efficiencies for some
common1H–15N correlation experiments on a typical me-
dium sized protein. The pulse sequences are presented in
Figs. 1A–1C. Sequence (A) is an ordinary phase cycled
HSQC experiment (10), sequence (B) is a sensitivity en-
hanced, phase modulated, gradient selected HSQC experi-
ment (11), and sequence (C) is a heteronuclear cross-polar-
ization (CP) based experiment (12). In Fig. 2 the simulated
transfer efficiencies as a function of offset frequencies are
presented for the pulse sequences presented in Fig. 1. Trans-
fer efficiency in this case means the fraction of equilibrium
1H magnetization that follows the desired coherence transfer
pathways and can be detected as in-phase transversex or y
magnetization during acquisition.

We have used the following parameters in order to describe
the two-spin system. The spinsI andS are assigned to1H and
15N nuclei, e.g., in a protein backbone amide. The one-bond
scalar coupling constant is 92 Hz. The molecular dynamics are
described by the overall rotational correlation timetm 5 5 ns,
the correlation time for internal motionste 5 50 ps, and the
order parameterS2 5 0.8. Theangle between the unique axis
of the CSA tensor and the internuclear vectorr IS is assumed to
be w 5 22°.

The nitrogen is assumed to be relaxed by DD interaction
with the proton and by CSA interaction with the external field
using (s\ 2 s') 5 2160 ppm.

The proton experiences DD relaxation due to the nitrogen
and a virtual proton at distances of 1.02 and 1.86 Å, respec-
tively. The distance to the virtual proton is calculated by
first summing up the distances between each amide proton
and all other protons to the power of26 in a previously
determined protein structure (25), and then taking this sum
to the power of21/6 (26). The average of these amide
protons to other protons distances is 1.86 Å. The longitudi-
nal and transverse homonuclear proton DD-relaxation rates,

FIG. 1. Pulse sequences for inverse detection1H–15N correlation experi-
ments for which overall coherence transfer efficiencies are simulated using the
developed formalism. Sequence (A) is a phase cycled HSQC experiment (10).
Sequence (B) is a sensitivity enhanced, phase modulated, gradient selected
HSQC experiment (11). Sequence (C) is a heteronuclear cross-polarization
(CP) based experiment (12) with DIPSI-2 (27) mixing. All pulse phases arex
unless otherwise indicated. Thin and thick vertical bars indicate 90° and 180°
pulses, respectively. The15N RF field strength is 5555 Hz in all pulse
sequences. The1H RF field strength is set to 50,000 Hz for all hard pulses and
to 5555 Hz for DIPSI-2 mixing in sequence (C). The time delays aret 5 d 5
2.72 ms ande 5 0.27 ms. The pulsed field gradients in sequence (B) are 2.72
and 0.27 ms long and applied with strengths of 30 and630.4 G/cm, respec-
tively. The DIPSI-2 mixing times in sequence (C) are 10.36 ms, which
corresponds to two (R, R# , R# , R) supercycles. Phase cycling is employed as
follows: (A) f1 5 ( y, y, 2y, 2y); f2 5 ( x, 2x, 2x, x); rec.5 ( x, 2x).
(B) f1 5 ( x); rec.5 ( x). (C) f1 5 ( y, y, 2y, 2y); f2 5 ( x, x, 2x, 2x);
f3 5 ( x, 2x, 2x, x); f4 5 ( x, x, 2x, 2x); rec. 5 ( x, 2x, 2x, x).
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denotedrH andlH, can be calculated using equations similar
to Eqs. [24] and [26]:

rH 5
1

4 S m0

4pD
2 S\gH

2

r eff
3 D 2

@ J~0! 1 3J~vH! 1 6J~2vH!# [39]

lH 5
1

8 S m0

4pD
2 S\gH

2

r eff
3 D 2

@5J~0! 1 9J~vH! 1 6J~2vH!#. [40]

The static magnetic field strength is set to 14.09 T and the
simulations are performed with similar and experimentally real-

FIG. 2. Simulated transfer efficiencies as a function of offset chemical shifts for (A) a phase cycled HSQC, (B) a sensitivity enhanced HSQC, and (C) a
heteronuclear CP based correlation experiment. The remaining fraction of in-phasex or y magnetization at the beginning of the acquisition period is presented
as contour levels. The pulse sequences used in the simulations are presented in Fig. 1. The nuclear spins1H and15N are coupled together with a scalar coupling
constant of 92 Hz. The molecular dynamics important for relaxation are described by the overall rotational correlation timetm 5 5 ns; the correlation time of
internal motionste 5 50 ps; and the order parameterS2 5 0.8. Other relevant parameters assumed in the simulations are given in the text.
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istic RF field strengths in order to be able to compare transfer
efficiencies. The RF field strength for1H is 50,000 Hz for all hard
pulses. The RF field strength for15N in all sequences and for1H
DIPSI-2 mixing in sequence (C) is 5555 Hz. The corresponding
90° pulse lengths are 5 and 45ms, respectively.

Pulse Sequences

The phase cycled HSQC in Fig. 1A (10) is implemented as
written without any special problems.

The sensitivity enhanced gradient selected HSQC in Fig. 1B
(11) is more difficult to implement since it includes pulsed field
gradients (PFG). We have implemented the PFG in the follow-
ing way. The effect of a pulsed field gradient is az rotation
identical to the effect of the chemical shift. When the PFG is
applied a term proportional to the PFG field strength is added
to all chemical shift terms in Eq. [19] according to

VI 5 VI 2 gIB0~ z!

VS 5 VS 2 gSB0~ z!, [41]

whereB0(z) is the strength of the applied PFG as a function of the
physical height of the sample tube. Only a single value ofzcan be
used at a time in the numerical calculations, corresponding to a
singlexy plane in the sample tube. The calculations are therefore
repeated with linearly spaced values ofz and the normalized
results are added. In this way an integration over the height of the
sample is performed. When pulsed field gradients are successfully
implemented in a pulse sequence the desired magnetizations al-
ways have the same phase at the beginning of the acquisition and
is added constructively while unwanted magnetizations have ran-
dom phases and are added destructively. Simulations using dif-
ferent numbers of slices show that 50 planes are sufficient for
almost complete cancellation of unwanted magnetization. We
have therefore used 50 planes when integrating over the height of
the sample, which is assumed to be 1 cm.B0(z) was assumed to
be a linear function ofz.

Both echo and antiecho pathways were simulated and sub-
tracted in order to obtain the observabley magnetization in the
same way as in real experiments (11).

The cross-polarization based experiment in Fig. 1C (12) uses
simultaneous DIPSI-2 (27) mixing on both the1H and the15N
nuclei. This can easily be simulated using the homogeneous
master equation.

Transfer Efficiencies

The transfer efficiencies for the three pulse sequences pre-
sented in Figs. 1A–1C are compared in Figs. 2A–2C. The
normalizedx or y magnetization is presented as a function of
offset frequencies in ppm for1H and15N. The t1 incrementa-
tion delay is set to 0.

The ordinary phase cycled HSQC experiment (A) has the
highest transferred intensity of the three experiments as well as
a large1H bandwidth. It should be noted that the sensitivity
enhanced experiment (B) transfers bothx andy magnetization
from the15N dimension to the1H dimension and is=2 more
sensitive compared to amplitude modulated experiments for a
complete 2D data set. When this effect is taken into account the
most efficient experiment is the sensitivity enhanced experi-
ment for the present set of dynamics parameters. The cross-
polarization based experiment (C) has the widest15N and the
most narrow1H bandwidth of all experiments. The transfer
surface is also smoother compared to the INEPT based exper-
iments.

DISCUSSION

It is interesting to note that all the common transformation
rules of the product operator formalism (13) occur as antisym-
metrical off-diagonal elements in the matrix of Eq. [19]. The
transformations due to chemical shifts, scalar coupling, and RF
pulses are clear and these are effective simultaneously, and in
competition, with relaxation.

All autorelaxation rates are diagonal elements, whereas the
cross-relaxation elements are symmetric off-diagonal ele-
ments. It can also be noted that the Bloch equations in the
rotating frame (28) as well as both the heteronuclear Solomon
equations (29) and the extended Solomon equations (9), are
integrated parts of Eq. [19]. The relaxation rates of hetero-
nuclear zero- and double-quantum coherences can be calcu-
lated as the difference and sum of the diagonal elementlmq

and the off-diagonal elementmmq, respectively.
The spin Hamiltonian for a heteronuclear two-spin sys-

tem, Eq. [5], includes only one operator, 2IzSz, that can
transfer magnetization through the scalar coupling. The
average Liouvillian for a complete DIPSI-2 sequence using
this Hamiltonian, Eq. [5], can be calculated using Eq. [38].
It contains approximately the planar coupling Hamiltonian,
pJ(IySy 1 IzSz), usually discussed in context of cross-polar-
ization based experiments. The effect of the complicated
DIPSI-2 sequence can be simulated with this average
Liouvillian. It should be clear that in the doubly rotating
frame operator terms such as 2IxSx and 2IySy average to zero
rapidly compared to the time scale of a single pulse and
cannot be effective for transfer of magnetization. These
operator terms should therefore only be included in average
Hamiltonians and not in real Hamiltonians.

There are several differences between the theory for het-
eronuclear spin systems presented here and the theory for
homonuclear spin systems presented earlier (8). The homo-
nuclear theory includes the strong scalar coupling Hamilto-
nian which induces rotations not only around 2IzSz, as is the
case for heteronuclear theory (see previous paragraph), but
also around 2IxSx and 2IySy. This makes isotropic mixing
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possible for homonuclear spin systems, with twice the rate
of transfer compared to cross-polarization for heteronuclear
spin systems (12). The relaxation terms are calculated dif-
ferently for homonuclear spin systems, and additional ele-
ments appear, including cross-relaxation between transverse
magnetization operators (8). The use of a doubly rotating
frame in the case of the heteronuclear theory prohibits use of
the relaxation terms given in our previous formulation of the
homonuclear theory.

The method we have used in order to simulate the effect of
a pulsed field gradient along thez axis is to the best of our
knowledge new. It does not take diffusion into account, but it
is in other respects a complete treatment. Shaped pulsed field
gradients can easily be implemented using this method. The
effect of an inhomogeneous RF field can also be simulated
using a similar approach if the inhomogeneity can be described
by an axially symmetric function. In this case terms of the form
vx(r , z) and vy(r , z) should be used in Eq. [19] and an
integration over both the radius and the height of the sample
performed.

The average Liouvillian calculated according to Eq. [38] can
with advantage be used as a target function in the optimization
of, for example, decoupling sequences, mixing sequences, and
shaped pulses. It can also be used when developing methods
for isolation or decoupling of cross-correlation or cross-relax-
ation pathways.

CONCLUSIONS

We have presented the complete homogeneous master equa-
tion for a heteronuclear two-spin system. The equation is
useful in the simulation of heteronuclear pulse sequences when
the effect of relaxation cannot be ignored. The homogeneous
master equation should also become useful in the development
and analysis of pulse sequences in which a specific average
relaxation Liouvillian is required. In order to illustrate the
applicability of the homogeneous master equation as formu-
lated here, the transfer efficiencies of three heteronuclear pulse
sequences, in the presence of relaxation, are calculated.
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